

EDP-323, a First-in-Class, Once-Daily, Oral Non-Nucleoside L-Protein, Replication Inhibitor Antiviral for the Treatment of RSV: Results From a Phase 2a Human Viral Challenge Study

John P. DeVincenzo¹, Alaa Ahmad¹, Shijie Chen¹, Brandon Löndt², Alex Mann², Julie Mori², Andrew Catchpole², Scott T. Rottinghaus¹

- 1. Enanta Pharmaceuticals, Inc. Watertown, MA, US
- 2. hVivo Ltd. London, UK

Presenter

John P DeVincenzo, MD, FAAP

Fellow, Pediatric Infectious Disease Society

Disclosure of Relevant Financial Relationships and Acknowledgments

Disclosures

- JPD, AA, SC, and STR are employees of Enanta Pharmaceuticals and hold Enanta Pharmaceuticals stock
- BL, AM, JM, and AC are employees of hVivo and hold hVivo stock

Acknowledgments

 Authors thank those who chose to volunteer for this study, and for the dedicated work of the Enanta and hVivo teams

EDP-323: First-in-Class, Oral, Once Daily, L-Protein Inhibitor for the Treatment of RSV Infection

- Significant unmet need for RSV antiviral therapies despite availability of prophylaxis¹
 - Complementary to effective preventive vaccines and monoclonal antibodies
 - See late breaker poster #253, Huang et al First in Pediatrics Phase 2 Trial of N-Targeting Antiviral, Zelicapavir
- EDP-323: first-in-class, non-nucleoside, direct-acting L-protein inhibitor in clinical development as an oral, once-daily therapy²
 - Blocks viral replication and transcription²
- Strong preclinical profile²⁻⁴
 - Picomolar in vitro potency against RSV-A and RSV-B²
 - Reduced viral load and disease dose dependently (prophylactically and therapeutically)^{2,3}
- Phase 1 study evaluated 7 daily oral doses up to 800 mg/dose^{5,6}
 - Once daily oral dosing supported by PK profile^{5,6}
 - Side effects and safety lab profile similar to placebo at all dose ranges^{5,6}
 - C_{24} (trough concentrations) of 200 mg and 600 mg dosing: 11- and 44-fold above in vitro protein-adjusted $EC_{90}^{5,6}$

Unique Properties of EDP-323 Mechanism of Action

Detailed in Poster #161: In Vitro Characterization of Respiratory Syncytial Virus Inhibitors

- EDP-323 maintained antiviral effect even when dosed up through 3 days post-infection in a 3D primary human airway epithelial cell system^{1,4}
 - Antiviral effect of Fusion Inhibitors ablated if dosed shortly after infection⁴
- Development of antiviral resistance
 - Fusion inhibitors: low barrier to resistance; little impact to viral fitness⁴
 - EDP-323: higher barrier to resistance⁴
 - N inhibitor zelicapavir: highest barrier to resistance; viral fitness defects⁴
- Will these Mechanism of Action properties translate into outcome improvements in clinical trials?

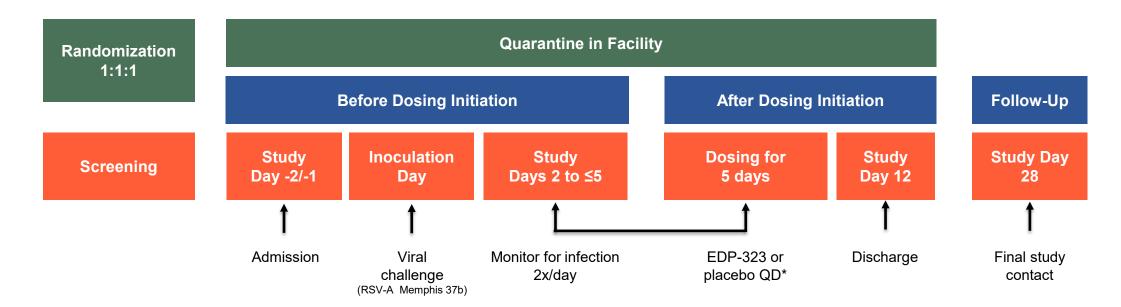
Study Overview

Objective

Evaluate the PK profile, safety, and antiviral activity of multiple doses of EDP-323 in a human RSV challenge study* among healthy adults¹

Description

Randomized, double-blind, placebo-controlled human viral challenge (RSV-A Memphis 37b strain)
 Phase 2a study[†]

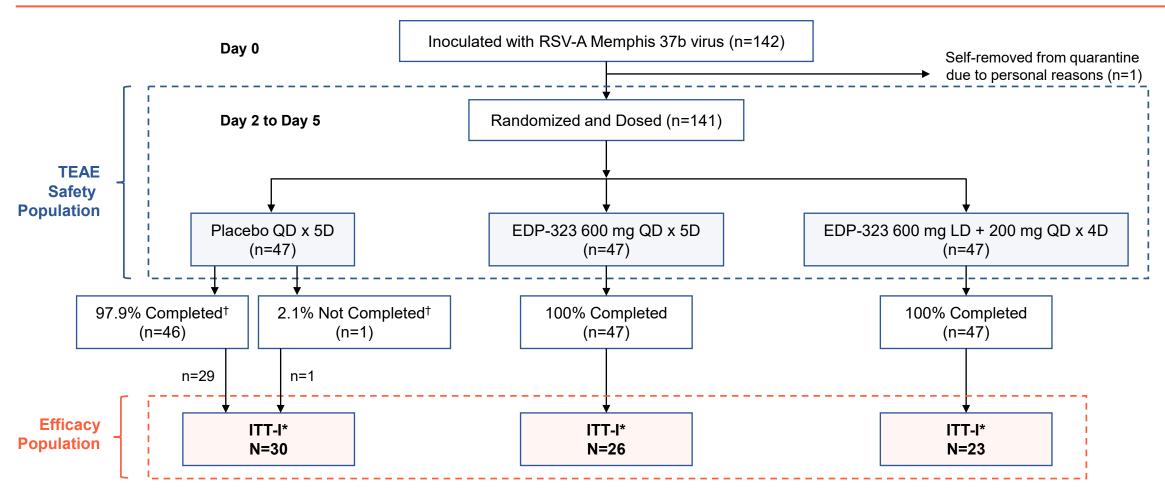

Population

Healthy, 18-55 years old, low serum RSV neutralizing antibody titer, weight ≥50 kg, BMI 18-35 kg/m²

^{*}RSV human challenge model mimics natural infection, allowing to evaluate safety/efficacy/immunogenicity of RSV therapeutics; utilized in the development of successful RSV vaccines.

Study Design and Endpoints

Dosing QD for 5 days (N=141), followed for 28 days


- EDP-323 high dose: 600 mg (n=47)
- EDP-323 low dose: 200 mg (600 mg loading dose on Day 1 followed by 200 mg for 4 days) (n=47)
- Placebo (n=47)

Please see Poster #153, Mills (Elmore) et al
PK and PK/PD Evaluation in RSV Human Challenge Study

- Primary endpoint
 - Viral load AUC measured by qRT-PCR in nasal samples
- Selected secondary endpoints
 - PK profile
 - Safety profile
 - Reduction in viral load AUC measured by viral culture
 - Reduction in total symptom score AUC

Participant Disposition

^{†1} participant discontinued the study due to personal reasons on Day 9 after completing the full 5-day dosing period; data from this participant were used in analyses

^{*}Primary efficacy analysis, intent-to-treat infected (ITT-I): all randomized participants who received challenge virus and ≥1 dose of study drug, and with RSV infection confirmed by central lab RT-PCR (>1 sample time-points positive by RT-PCR or a single sample time-point positive by culture)

Summary of Demographics

Demographics were balanced across study arms

		EDP-323 High Dose (n=47)	EDP-323 Low Dose (n=47)	Placebo (n=47)	
	Age, years, median (Q1, Q3)	28 (24, 33)	26 (24, 30)	27 (23, 30)	
	Sex, male, n (%)	32 (68.1)	30 (63.8)	28 (59.6)	
	Race, White, n (%)	39 (83.0)	35 (74.5)	38 (80.9)	

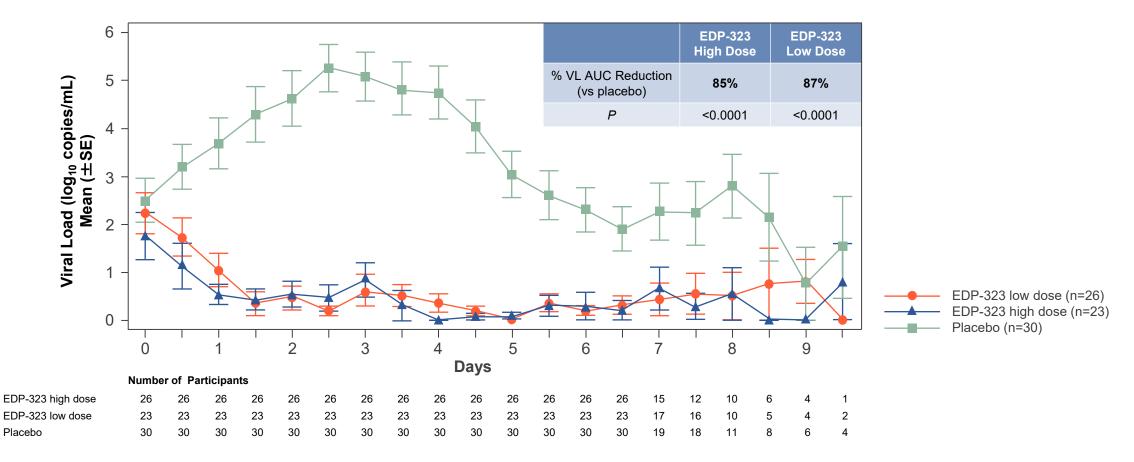
Summary of PK and Safety Outcomes

PK - EDP-323 mean trough plasma concentrations were maintained at 16- to 35-fold above protein-adjusted EC₉₀ against both RSV-A and RSV-B subtypes

See Poster #153, Elmore et al – PK and PK/PD Evaluations of Human Viral Challenge Study

Safety - The frequency of TEAEs was similar across EDP-323 and placebo arms

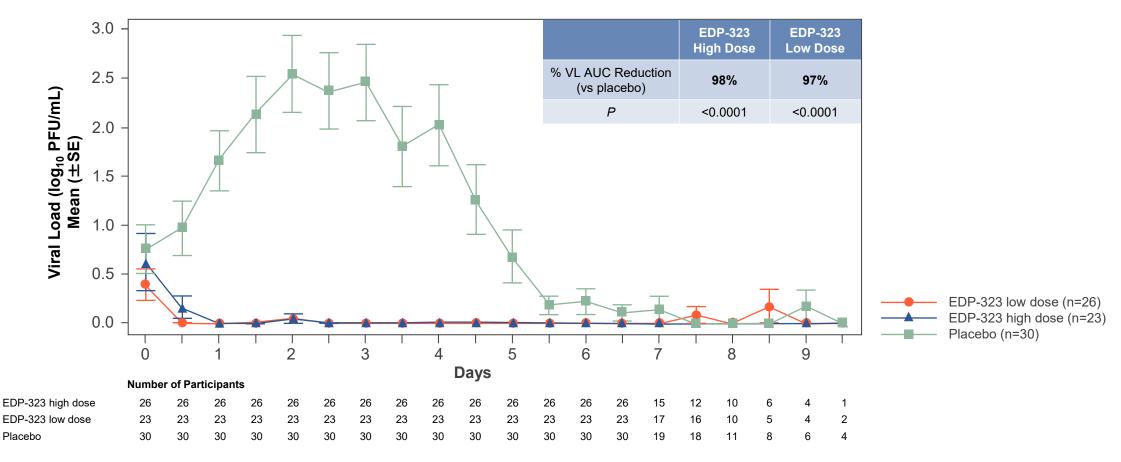
- There were no serious TEAEs, severe AEs, or AEs leading to treatment discontinuation/ study withdrawal
- TEAEs reflected usual RSV and quarantine-related patterns


		EDP-323 High Dose (n=47)	EDP-323 Low Dose (n=47)	Pooled EDP-323 (N=94)	Placebo (n=47)
	Participants with any TEAEs, n (%)	11 (23.4)	14 (29.8)	25 (26.6)	13 (27.7)
	Any TEAEs considered related to study drug, n (%)	1 (2.1)*	1 (2.1)*	2 (2.1)*	0 (0)
	Participants with TEAEs graded at least moderate in severity	1 (2.1)	1 (2.1)	2 (2.1)	2 (4.3)

Mean Viral Load Over Time and AUC by qRT-PCR

Primary Efficacy Endpoint: AUC (ITT-I Population)

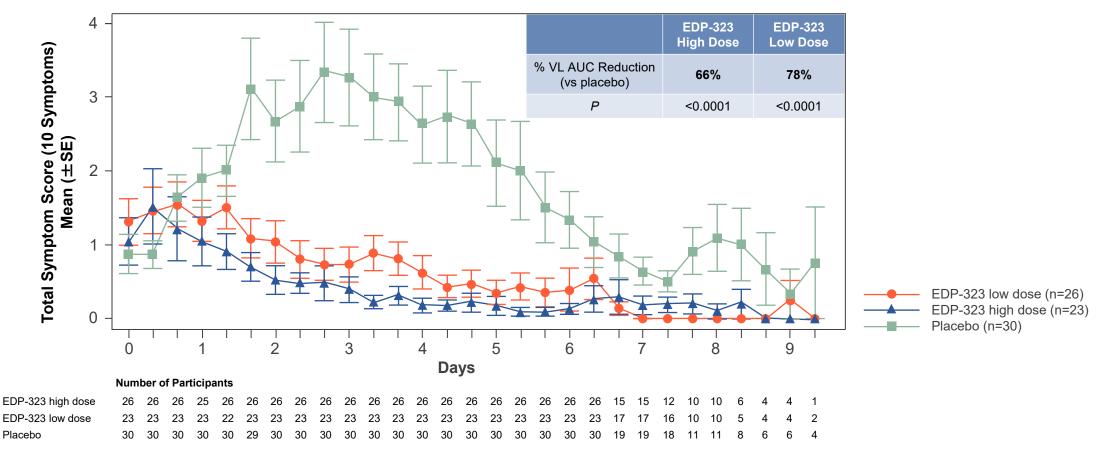
- EDP-323 showed 85% (high dose) and 87% (low dose) greater mean reductions in viral load AUC vs placebo (P < 0.0001)
 - No statistically significant differences between the 2 EDP-323 dosing regimens



Mean Viral Load Over Time and AUC by Viral Culture

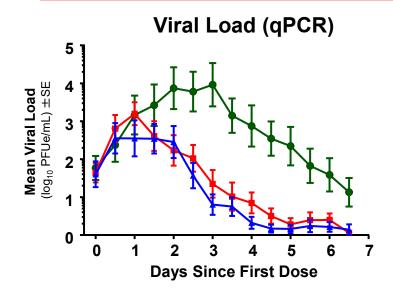
Secondary Efficacy Endpoint: AUC (ITT-I Population)

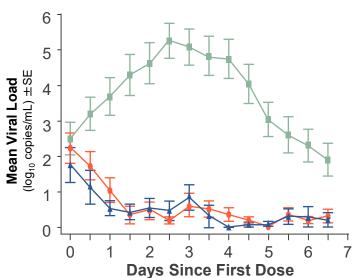
- EDP-323 showed 98% (high dose) and 97% (low dose) greater mean reductions in viral load AUC vs placebo (P < 0.0001)
 - No statistically significant differences between the 2 EDP-323 dosing regimens

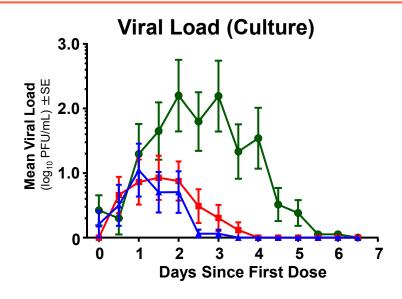


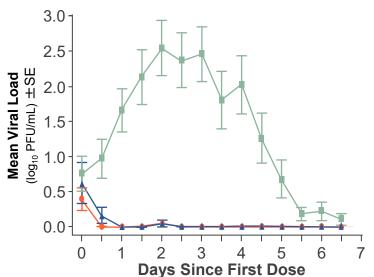
Mean Total Symptom Score and AUC

Secondary Efficacy Endpoint: AUC (ITT-I Population)


- EDP-323 showed 66% (high dose) and 78% (low dose) greater mean reductions in total symptom score AUC vs placebo (P < 0.0001)
 - No statistically significant differences between the 2 EDP-323 dosing regimens




Viral Dynamics in Human RSV Challenge Studies (Memphis-37b)



Fusion Inhibitor vs Polymerase Inhibitor

Fusion Inhibitor (RV521)

- → RV521 350mg PO BID x 5 days (n=16)
- RV521 200mg PO BID x 5 days (n=18)
- Placebo (n=19)

DeVincenzo et al. Antimicrobial Agents and Chemotherapy. 2020;64(2):e01884-19; and DeVincenzo et al. ATS 2018.

Polymerase Inhibitor (EDP-323)

- EDP-323 low dose PO QD x 5 days (n=26)
- EDP-323 high dose PO QD x 5 days (n=23)
- Placebo (n=30)

DeVincenzo et al. RSV-2025 (ISIRV) Iguazu Falls, Brazil.

EDP-323 RSV Human Challenge Study

Conclusions

- Well tolerated with safety profile similar to placebo
- Mean trough plasma concentrations maintained at 16- to 35-fold above protein-adjusted EC₉₀
- Primary and key secondary endpoints achieved with statistical significance at both dose levels vs placebo

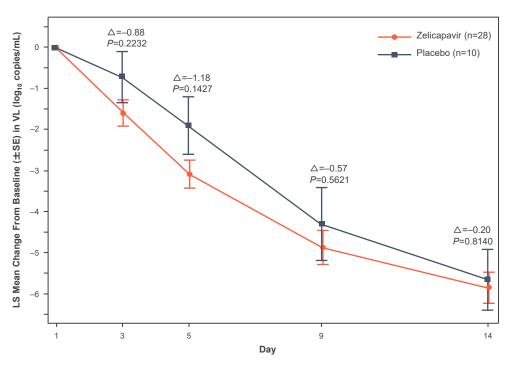
	EDP-323 Low Dose	EDP-323 High Dose	P *
qRT-PCR	87%	85%	<0.0001
Viral culture	97%	98%	<0.0001
Total symptom score	78%	66%	<0.0001

- No statistically significant differences between the 2 dosing regimens
- Outcomes confirm the potential of EDP-323 as a once-daily oral treatment for RSV and support further clinical evaluation

Poster Presentation: Zelicapavir for Treatment of RSV Infection in Young Children

A Phase-2, Double-Blind, Placebo-Controlled, International Trial of Zelicapavir for Treatment of RSV Infection in Young Children

Stephen Huang, Christopher Harris, John P DeVincenzo, Alaa Ahmad, Shijie Chen, Taylor Ngo, Scott T Rottinghaus


- Late breaker poster #253
- Poster session: RSV Monoclonal Antibodies and Antivirals

Date: Friday, March 14

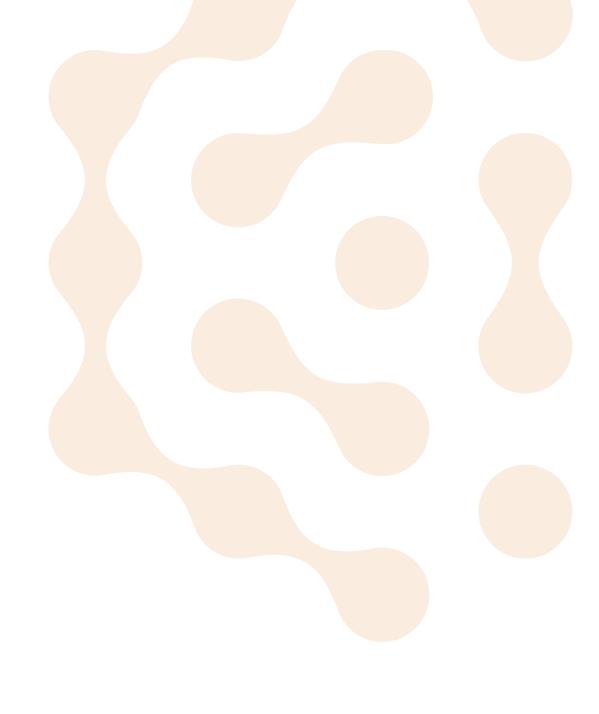
- Time: 4:15 - 5:15 PM

– Location: Pavillion C

LS Mean Change (± SE) From Baseline in Viral Load in Prespecified mITT-3 Population* Measured by qRT-PCR

LS, least-squares; mITT, modified intent-to-treat; RESOLVE-P; Respiratory Observable Reported Outcome-Pediatric; qRT-PCR, quantitative reverse transcription polymerase chain reaction.

^{*}Prespecified mITT-3 population: participants randomized within 3 days of symptom onset



Thank you!

Backup Slides DeVincenzo RSV-2025, Iguazu Falls, Brasil

Viral Dynamics after Fusion Inhibitor Antiviral Rx:

RV521 (Sisunatovir) Rx after RSV-A Memphis 37 human challenge

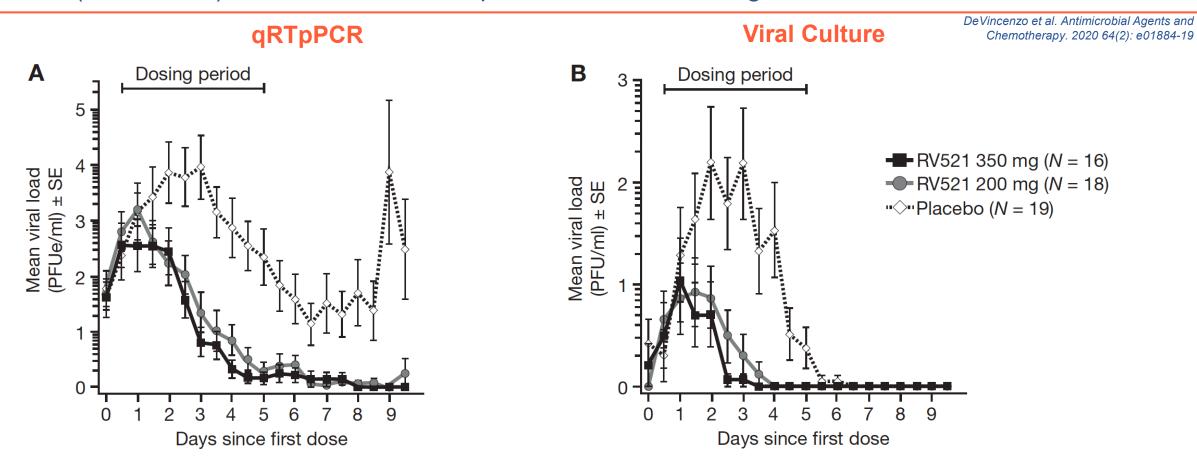


FIG 2 Mean viral load by nasal wash RT-qPCR (A) and by nasal wash quantitative culture (B) by day relative to dosing (ITT-I analysis set). Once RSV infection was confirmed (i.e., RSV RNA detected by qualitative integrated cycler PCR), subjects were assigned a randomization number; treatment was initiated 12 h (1 h) after the confirmatory RSV-positive nasal wash sample had been collected. Viral load (RT-qPCR) appeared to rebound after day 8.5 in the placebo arm. However, this apparent increase resulted from the staggered randomization of subjects (the mean viral load at day 9 was calculated from just four subjects, three of whom had consistently high viral loads throughout the study). ITT-I, intent-to-treat infected (all randomized subjects who received the challenge virus and at least one dose of study drug and met the criterion for laboratory-confirmed RSV infection [presence of viral shedding]); PFUe, PFU equivalents; RSV, respiratory syncytial virus; RT-qPCR, reverse transcriptase quantitative PCR; SE, standard error.